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Plants growing under field conditions often face multiple stress factors concurrently. These can 

include extremes of drought, salinity, or temperature coupled with attacks from pathogens or 

herbivores. Understanding how plants perceive, integrate, and respond to overlapping abiotic and 

biotic challenges is critical for guiding future crop improvement efforts. Complex signaling 

networks, involving phytohormones, transcriptional reprogramming, and epigenetic modifications, 

shape outcomes that can differ markedly from those elicited by individual stressors. This review 

examines how hormonal crosstalk and shared signaling nodes influence plant defense and tolerance 

mechanisms, explores specific case studies of simultaneous stresses, and considers the implications 

for breeding, biotechnological interventions, and agronomic management strategies. Key 

knowledge gaps and emerging research directions are discussed, emphasizing the urgency of 

interdisciplinary approaches. Harnessing insights into stress crosstalk promises to improve crop 

resilience and secure agricultural productivity in the face of global climate change and increasing 

pathogen pressures.  
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Introduction 

In agricultural ecosystems worldwide, plants must continually adapt to a 

dynamic combination of environmental and biological pressures. Rapid climate 

change has aggravated the frequency and intensity of abiotic stresses, including 

drought, salinity, and temperature extremes, while simultaneously expanding the 

range and aggressiveness of many pathogens and pests (Atkinson & Urwin, 2012; 

Bigeard et al., 2015). Field conditions rarely present stress factors in isolation; 

rather, plants are often compelled to cope with multiple challenges simultaneously. 

Such complexity extends beyond simple additive effects. The integration of 

signals from distinct stress pathways can generate emergent properties, sometimes 

enhancing overall resilience, but often creating conflicts that reduce the 

effectiveness of plant defenses. 

A comprehensive understanding of how plants manage overlapping stress 

signals is a key scientific and agricultural priority. The importance of dissecting 

crosstalk between abiotic and biotic stress responses has grown as researchers have 

recognized that pathways involved in drought resistance, for instance, can 

influence susceptibility or resistance to pathogens (Cohen & Leach, 2019; Nguyen 

et al., 2016). Knowledge gleaned from these interactions enables more informed 

breeding, the rational design of biotechnological interventions, and the 

development of agronomic strategies that improve resilience under conditions 

predicted for future climates (Rivero et al., 2022; Saijo & Loo, 2020; Elkelish et 

al., 2020b). 
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The objectives of this review are to summarize recent advances in elucidating the molecular and 

hormonal mechanisms that integrate abiotic and biotic stress signals, to highlight points of synergy and 

antagonism, and to discuss how evolving insights guide crop improvement. Current approaches leveraging 

omics technologies, epigenetic profiling, and genome editing tools are considered alongside conventional 

breeding and integrated pest management strategies. The review also identifies critical knowledge gaps 

and proposes future research directions emphasizing interdisciplinary collaborations. 

Conceptual Framework: Plant Signaling Under Stress 

Plants sense and respond to a wide range of environmental stimuli by employing a hierarchy of 

receptors, secondary messengers, and signaling cascades. Abiotic stresses are often detected through 

changes in cellular homeostasis, including osmotic imbalances and redox states. Such perception triggers 

defense and tolerance pathways orchestrated by phytohormones like abscisic acid (ABA), jasmonates 

(JA), salicylic acid (SA), and ethylene (ET). Biotic stresses are recognized either by pattern-recognition 

receptors that detect conserved pathogen-associated molecular patterns or by intracellular receptors 

responding to specific pathogen effectors (Jones & Dangl, 2006; Pieterse et al., 2012). 

The transcriptional reprogramming that follows stress perception involves vast networks of 

transcription factors, including amino-acid sequence WRKYGQK (WRKY), cup-shaped cotyledon 

(CUC) (NAC), and basic leucine zipper containing domain proteins (bZIP) families, as well as post-

transcriptional and epigenetic modifications (Chinnusamy & Zhu, 2009; Dowen et al., 2012). Under 

abiotic stress, pathways frequently converge on ABA-mediated signals that reduce water loss and protect 

cell integrity. By contrast, biotic defense often depends on coordinated SA, JA, and ET signaling. Despite 

these differences, evidence suggests extensive overlap and potential for mutual modulation. The same 

regulators can be involved in immune responses and tolerance to osmotic or temperature stress, and the 

accumulation of reactive oxygen species (ROS) can serve as a common second messenger integrating 

multiple cues (Miller et al., 2010). 

Mechanisms of Crosstalk: Hormonal and Molecular Interactions 

Crosstalk between abiotic and biotic signaling relies heavily on hormone networks. ABA, typically 

elevated under drought, is known to suppress certain SA-dependent defenses, thus creating a trade-off that 

can reduce pathogen resistance while improving drought tolerance (Cohen & Leach, 2019; Yasuda et al., 

2008). Similarly, SA and JA pathways, central to immune responses, often act antagonistically, with SA 

dominating in defense against biotrophic pathogens and JA playing a major role against herbivores and 

necrotrophs (Thaler et al., 2012; Ku et al., 2018). The net outcome depends on the relative timing and 

intensity of both stresses, as well as on plant genotype and developmental stage. 

Not all crosstalk is antagonistic. Synergistic interactions occur in certain contexts, such as when ABA 

and JA signaling reinforce each other under conditions of water deficit and insect attack, allowing a plant 

to conserve water while simultaneously mounting effective anti-herbivore defenses (Nguyen et al., 2016). 

ROS and redox signaling further integrate these signals, influencing transcription factors and epigenetic 

regulators to shape gene expression patterns. Shared signaling nodes, including MAPK cascades and 

WRKY transcription factors, serve as molecular hubs that enable plants to sense multiple inputs and 

execute nuanced responses (Bigeard et al., 2015). 

Balancing stress tolerance and defense represents an adaptive challenge, as investment in defense-

related compounds often draws resources away from growth and reproduction. These metabolic and 

fitness trade-offs, observed in both model plants and crops, reflect evolutionary compromises. Over 

millennia, plant populations have evolved strategies to optimize these trade-offs, contributing to species 

diversity and distribution patterns under varied ecological pressures (Huot et al., 2014). 
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Case Studies: Specific Abiotic–Biotic Stress Combinations 

Examining concrete scenarios clarifies the biological and agricultural significance of crosstalk. 

Drought conditions often induce ABA-dependent stomatal closure, potentially limiting pathogen entry but 

also weakening SA-mediated immune responses against pathogens that do not rely on stomatal ingress. 

Climate models predicting more frequent drought events highlight the importance of understanding these 

interactions to forecast disease outbreaks and refine irrigation strategies (Cohen & Leach, 2019; Yasuda 

et al., 2008). 

Salinity stress, a growing global problem, can disrupt ionic balance and trigger osmotic stress 

responses that alter JA-mediated defenses against herbivory. In some instances, plants under saline 

conditions become more susceptible to insects due to reduced allocation to defense metabolites. 

Conversely, understanding these interactions allows breeders to select cultivars with stable JA responses 

under salt stress (Rudgers et al., 2004; Elkelish et al., 2020a). 

Temperature extremes add complexity to plant-pathogen dynamics. High temperatures can influence 

immune receptor functions through heat shock proteins (Wu et al., 2017). In other cases, cold stress may 

compromise pattern-triggered immunity, leaving plants vulnerable to pathogens that thrive at lower 

temperatures. Such knowledge guides breeding programs for resilience under increasingly erratic thermal 

conditions. 

Agricultural and Biotechnological Implications 

Insights into crosstalk between stress responses have practical value for developing resilient crops. 

Traditional breeding approaches have started to integrate knowledge of hormonal pathways and 

transcriptional regulators to improve simultaneous tolerance to drought and resistance to pathogens. 

Quantitative trait loci (QTL) analysis and genomic selection now incorporate stress response markers, 

offering more robust prediction of plant performance under field conditions (Rivero et al., 2022). 

Biotechnological interventions, including genetic engineering and gene editing with CRISPR/Cas9, 

can fine-tune hormone levels, modify key transcription factors, or alter epigenetic marks. This offers the 

possibility of recalibrating growth-defense trade-offs and optimizing stress responses. Synthetic biology 

allows the design of artificial signaling circuits that respond predictably to concurrent stresses. By 

introducing novel regulatory elements or modifying promoter regions, researchers can generate plants 

capable of balanced resource allocation, securing yields under complex stress scenarios (Wang et al., 

2021). 

Beyond genetic and molecular approaches, agronomic management can exploit knowledge of 

crosstalk. Adjusting irrigation timing, optimizing soil amendments, and deploying beneficial microbes 

that modulate hormone signals can help maintain a favorable stress response profile. Integrated pest 

management approaches can be synchronized with the plant’s internal signaling state to minimize the 

metabolic cost of defense while ensuring adequate protection against pathogens and pests (Berendsen et 

al., 2012; Elkelish et al., 2020a). 

Knowledge Gaps and Future Perspectives 

Despite the progress made in recent years, many fundamental questions remain unanswered. The 

precise molecular mechanisms that allow plants to integrate opposing hormonal cues, the role of 

epigenetic modifications in establishing long-term stress memory, and the evolutionary trajectories that 

have shaped crosstalk networks all merit deeper investigation. These gaps impede the full exploitation of 

crosstalk for crop improvement. 

Emerging tools and methodologies offer hope. High-throughput omics, including transcriptomics, 

proteomics, and metabolomics, can capture the complexity of responses at a systems level, while single-

cell technologies and advanced imaging help localize these processes within tissues. Computational 

modeling and machine learning can predict stress outcomes and guide experimental designs that pinpoint 

key regulatory nodes. Broad collaborations across disciplines that include plant physiologists, molecular 
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biologists, breeders, agronomists, ecologists, and evolutionary biologists can integrate mechanistic 

insights into practical strategies for sustainable agriculture (Saijo & Loo, 2020). 

Conclusion 

Plants face a complex interplay of environmental and biological challenges in natural and agricultural 

settings. Their ability to perceive, integrate, and respond to multiple concurrent stresses is governed by 

intricate crosstalk among hormonal pathways, transcription factors, and epigenetic regulators. These 

networks yield outcomes that can differ significantly from responses to individual stresses, sometimes 

enhancing tolerance, other times forcing trade-offs that reduce fitness. 

A clearer understanding of these integrative mechanisms offers exciting opportunities for improving 

crop performance. By harnessing crosstalk-based insights, plant breeders and biotechnologists can create 

more resilient cultivars that maintain yield and quality under increasingly unpredictable environmental 

conditions. Agronomic management strategies and molecular technologies, such as genome editing and 

synthetic biology, promise to refine these responses further, aligning plant physiology with sustainable 

farming practices and global food security goals. 
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